Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations
نویسندگان
چکیده
منابع مشابه
A Bayesian Mixed Logit-Probit Model for Multinomial Choice
In this paper we introduce a new flexible mixed model for multinomial discrete choice where the key individualand alternative-specific parameters of interest are allowed to follow an assumptionfree nonparametric density specification while other alternative-specific coefficients are assumed to be drawn from a multivariate normal distribution which eliminates the independence of irrelevant alter...
متن کاملData Augmentation, Frequentist Estimation, and the Bayesian Analysis of Multinomial Logit Models
This article introduces a generalization of Tanner and Wong’s data augmentation algorithm which can be used when the complete data posterior distribution cannot be directly sampled. The algorithm proposes parameter values based on complete data sampling distributions of convenient frequentist estimators which ignore some information in the complete data likelihood. The proposals are filtered us...
متن کاملData Augmentation for the Bayesian Analysis of Multinomial Logit Models
This article introduces a Markov chain Monte Carlo (MCMC) method for sampling the parameters of a multinomial logit model from their posterior distribution. Let yi ∈ {0, . . . ,M} denote the categorical response of subject i with covariates xi = (xi1, . . . , xip) T . Let X = (x1, . . . ,xn) T denote the design matrix, and let y = (y1, . . . , yn) T . Multinomial logit models relate yi to xi th...
متن کاملFitting Bayesian hierarchical multinomial logit models in PROC MCMC
The paper illustrates how to use the MCMC procedure to fit a hierarchical, multinomial logit model for a nominal response variable with correlated responses in a Bayesian framework. In particular, the paper illustrates how to perform three important parts of Bayesian model fitting. First, to make sure appropriate prior distributions are selected, the paper shows how to simulate draws directly f...
متن کاملFast Estimation of Multinomial Logit Models: R Package mnlogit
We present the R package mnlogit for estimating multinomial logistic regression models, particularly those involving a large number of categories and variables. Compared to existing software, mnlogit offers speedups of 10–50 times for modestly sized problems and more than 100 times for larger problems. Running in parallel mode on a multicore machine gives up to 4 times additional speedup on 8 p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transportation Research Part B: Methodological
سال: 2020
ISSN: 0191-2615
DOI: 10.1016/j.trb.2019.12.001